3.6.19 \(\int \frac {(c+d x+e x^2+f x^3) (a+b x^4)^{3/2}}{x^5} \, dx\) [519]

3.6.19.1 Optimal result
3.6.19.2 Mathematica [C] (verified)
3.6.19.3 Rubi [A] (verified)
3.6.19.4 Maple [C] (verified)
3.6.19.5 Fricas [F]
3.6.19.6 Sympy [C] (verification not implemented)
3.6.19.7 Maxima [F]
3.6.19.8 Giac [F]
3.6.19.9 Mupad [F(-1)]

3.6.19.1 Optimal result

Integrand size = 30, antiderivative size = 386 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^5} \, dx=\frac {12 a \sqrt {b} f x \sqrt {a+b x^4}}{5 \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {3}{4} b \left (c+e x^2\right ) \sqrt {a+b x^4}+\frac {2}{15} b x \left (5 d+9 f x^2\right ) \sqrt {a+b x^4}-\frac {1}{12} \left (\frac {3 c}{x^4}+\frac {4 d}{x^3}+\frac {6 e}{x^2}+\frac {12 f}{x}\right ) \left (a+b x^4\right )^{3/2}+\frac {3}{4} a \sqrt {b} e \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-\frac {3}{4} \sqrt {a} b c \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )-\frac {12 a^{5/4} \sqrt [4]{b} f \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 \sqrt {a+b x^4}}+\frac {2 a^{3/4} \sqrt [4]{b} \left (5 \sqrt {b} d+9 \sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{15 \sqrt {a+b x^4}} \]

output
-1/12*(3*c/x^4+4*d/x^3+6*e/x^2+12*f/x)*(b*x^4+a)^(3/2)-3/4*b*c*arctanh((b* 
x^4+a)^(1/2)/a^(1/2))*a^(1/2)+3/4*a*e*arctanh(x^2*b^(1/2)/(b*x^4+a)^(1/2)) 
*b^(1/2)+3/4*b*(e*x^2+c)*(b*x^4+a)^(1/2)+2/15*b*x*(9*f*x^2+5*d)*(b*x^4+a)^ 
(1/2)+12/5*a*f*x*b^(1/2)*(b*x^4+a)^(1/2)/(a^(1/2)+x^2*b^(1/2))-12/5*a^(5/4 
)*b^(1/4)*f*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4 
)*x/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^( 
1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/(b*x^4+a)^(1/2 
)+2/15*a^(3/4)*b^(1/4)*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*ar 
ctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^ 
(1/2))*(9*f*a^(1/2)+5*d*b^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2) 
+x^2*b^(1/2))^2)^(1/2)/(b*x^4+a)^(1/2)
 
3.6.19.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.27 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.42 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^5} \, dx=\frac {\sqrt {a+b x^4} \left (-10 a^3 d \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {3}{4},\frac {1}{4},-\frac {b x^4}{a}\right )+3 x \left (-5 a^3 e \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {1}{2},\frac {1}{2},-\frac {b x^4}{a}\right )-10 a^3 f x \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {1}{4},\frac {3}{4},-\frac {b x^4}{a}\right )+b c x^2 \left (a+b x^4\right )^2 \sqrt {1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (2,\frac {5}{2},\frac {7}{2},1+\frac {b x^4}{a}\right )\right )\right )}{30 a^2 x^3 \sqrt {1+\frac {b x^4}{a}}} \]

input
Integrate[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^5,x]
 
output
(Sqrt[a + b*x^4]*(-10*a^3*d*Hypergeometric2F1[-3/2, -3/4, 1/4, -((b*x^4)/a 
)] + 3*x*(-5*a^3*e*Hypergeometric2F1[-3/2, -1/2, 1/2, -((b*x^4)/a)] - 10*a 
^3*f*x*Hypergeometric2F1[-3/2, -1/4, 3/4, -((b*x^4)/a)] + b*c*x^2*(a + b*x 
^4)^2*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[2, 5/2, 7/2, 1 + (b*x^4)/a]))) 
/(30*a^2*x^3*Sqrt[1 + (b*x^4)/a])
 
3.6.19.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 389, normalized size of antiderivative = 1.01, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2364, 27, 2372, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^4\right )^{3/2} \left (c+d x+e x^2+f x^3\right )}{x^5} \, dx\)

\(\Big \downarrow \) 2364

\(\displaystyle -6 b \int -\frac {\left (12 f x^3+6 e x^2+4 d x+3 c\right ) \sqrt {b x^4+a}}{12 x}dx-\frac {1}{12} \left (a+b x^4\right )^{3/2} \left (\frac {3 c}{x^4}+\frac {4 d}{x^3}+\frac {6 e}{x^2}+\frac {12 f}{x}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} b \int \frac {\left (12 f x^3+6 e x^2+4 d x+3 c\right ) \sqrt {b x^4+a}}{x}dx-\frac {1}{12} \left (a+b x^4\right )^{3/2} \left (\frac {3 c}{x^4}+\frac {4 d}{x^3}+\frac {6 e}{x^2}+\frac {12 f}{x}\right )\)

\(\Big \downarrow \) 2372

\(\displaystyle \frac {1}{2} b \int \left (\frac {\sqrt {b x^4+a} \left (6 e x^2+3 c\right )}{x}+\left (12 f x^2+4 d\right ) \sqrt {b x^4+a}\right )dx-\frac {1}{12} \left (a+b x^4\right )^{3/2} \left (\frac {3 c}{x^4}+\frac {4 d}{x^3}+\frac {6 e}{x^2}+\frac {12 f}{x}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} b \left (\frac {4 a^{3/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (9 \sqrt {a} f+5 \sqrt {b} d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{15 b^{3/4} \sqrt {a+b x^4}}-\frac {24 a^{5/4} f \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 b^{3/4} \sqrt {a+b x^4}}-\frac {3}{2} \sqrt {a} c \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )+\frac {3 a e \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{2 \sqrt {b}}+\frac {3}{2} \sqrt {a+b x^4} \left (c+e x^2\right )+\frac {4}{15} x \sqrt {a+b x^4} \left (5 d+9 f x^2\right )+\frac {24 a f x \sqrt {a+b x^4}}{5 \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}\right )-\frac {1}{12} \left (a+b x^4\right )^{3/2} \left (\frac {3 c}{x^4}+\frac {4 d}{x^3}+\frac {6 e}{x^2}+\frac {12 f}{x}\right )\)

input
Int[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^5,x]
 
output
-1/12*(((3*c)/x^4 + (4*d)/x^3 + (6*e)/x^2 + (12*f)/x)*(a + b*x^4)^(3/2)) + 
 (b*((24*a*f*x*Sqrt[a + b*x^4])/(5*Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^2)) + (3*( 
c + e*x^2)*Sqrt[a + b*x^4])/2 + (4*x*(5*d + 9*f*x^2)*Sqrt[a + b*x^4])/15 + 
 (3*a*e*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(2*Sqrt[b]) - (3*Sqrt[a]*c 
*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/2 - (24*a^(5/4)*f*(Sqrt[a] + Sqrt[b]*x^ 
2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4) 
*x)/a^(1/4)], 1/2])/(5*b^(3/4)*Sqrt[a + b*x^4]) + (4*a^(3/4)*(5*Sqrt[b]*d 
+ 9*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b] 
*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(15*b^(3/4)*Sqrt[a 
 + b*x^4])))/2
 

3.6.19.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2364
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Module[{u 
 = IntHide[x^m*Pq, x]}, Simp[u*(a + b*x^n)^p, x] - Simp[b*n*p   Int[x^(m + 
n)*(a + b*x^n)^(p - 1)*ExpandToSum[u/x^(m + 1), x], x], x]] /; FreeQ[{a, b} 
, x] && PolyQ[Pq, x] && IGtQ[n, 0] && GtQ[p, 0] && LtQ[m + Expon[Pq, x] + 1 
, 0]
 

rule 2372
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Mo 
dule[{q = Expon[Pq, x], j, k}, Int[Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, 
 j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, 
 n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0 
] &&  !PolyQ[Pq, x^(n/2)]
 
3.6.19.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.84 (sec) , antiderivative size = 344, normalized size of antiderivative = 0.89

method result size
elliptic \(-\frac {a c \sqrt {b \,x^{4}+a}}{4 x^{4}}-\frac {a d \sqrt {b \,x^{4}+a}}{3 x^{3}}-\frac {a e \sqrt {b \,x^{4}+a}}{2 x^{2}}-\frac {a f \sqrt {b \,x^{4}+a}}{x}+\frac {b f \,x^{3} \sqrt {b \,x^{4}+a}}{5}+\frac {b e \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {b d x \sqrt {b \,x^{4}+a}}{3}+\frac {b c \sqrt {b \,x^{4}+a}}{2}+\frac {4 b d a \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {3 a e \sqrt {b}\, \ln \left (2 x^{2} \sqrt {b}+2 \sqrt {b \,x^{4}+a}\right )}{4}+\frac {12 i a^{\frac {3}{2}} f \sqrt {b}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {3 \sqrt {a}\, b c \,\operatorname {arctanh}\left (\frac {\sqrt {a}}{\sqrt {b \,x^{4}+a}}\right )}{4}\) \(344\)
default \(d \left (-\frac {a \sqrt {b \,x^{4}+a}}{3 x^{3}}+\frac {b x \sqrt {b \,x^{4}+a}}{3}+\frac {4 a b \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+f \left (-\frac {a \sqrt {b \,x^{4}+a}}{x}+\frac {\sqrt {b \,x^{4}+a}\, b \,x^{3}}{5}+\frac {12 i a^{\frac {3}{2}} \sqrt {b}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+e \left (\frac {b \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {3 a \sqrt {b}\, \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{4}-\frac {a \sqrt {b \,x^{4}+a}}{2 x^{2}}\right )+c \left (\frac {b \sqrt {b \,x^{4}+a}}{2}-\frac {a \sqrt {b \,x^{4}+a}}{4 x^{4}}-\frac {3 \sqrt {a}\, b \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{4}\right )\) \(350\)
risch \(-\frac {a \sqrt {b \,x^{4}+a}\, \left (12 f \,x^{3}+6 e \,x^{2}+4 d x +3 c \right )}{12 x^{4}}+\frac {4 b d a \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {b f \,x^{3} \sqrt {b \,x^{4}+a}}{5}+\frac {12 i \sqrt {b}\, f \,a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {12 i \sqrt {b}\, f \,a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {b e \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {3 \sqrt {b}\, a e \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{4}+\frac {b d x \sqrt {b \,x^{4}+a}}{3}+\frac {b c \sqrt {b \,x^{4}+a}}{2}-\frac {3 b \sqrt {a}\, c \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{4}\) \(380\)

input
int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^5,x,method=_RETURNVERBOSE)
 
output
-1/4*a*c*(b*x^4+a)^(1/2)/x^4-1/3*a*d*(b*x^4+a)^(1/2)/x^3-1/2*a*e*(b*x^4+a) 
^(1/2)/x^2-a*f*(b*x^4+a)^(1/2)/x+1/5*b*f*x^3*(b*x^4+a)^(1/2)+1/4*b*e*x^2*( 
b*x^4+a)^(1/2)+1/3*b*d*x*(b*x^4+a)^(1/2)+1/2*b*c*(b*x^4+a)^(1/2)+4/3*b*d*a 
/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^ 
(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+ 
3/4*a*e*b^(1/2)*ln(2*x^2*b^(1/2)+2*(b*x^4+a)^(1/2))+12/5*I*a^(3/2)*f*b^(1/ 
2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)* 
b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2), 
I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I))-3/4*a^(1/2)*b*c*arctanh(a^(1/ 
2)/(b*x^4+a)^(1/2))
 
3.6.19.5 Fricas [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^5} \, dx=\int { \frac {{\left (b x^{4} + a\right )}^{\frac {3}{2}} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{5}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^5,x, algorithm="fricas")
 
output
integral((b*f*x^7 + b*e*x^6 + b*d*x^5 + b*c*x^4 + a*f*x^3 + a*e*x^2 + a*d* 
x + a*c)*sqrt(b*x^4 + a)/x^5, x)
 
3.6.19.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 5.48 (sec) , antiderivative size = 379, normalized size of antiderivative = 0.98 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^5} \, dx=\frac {a^{\frac {3}{2}} d \Gamma \left (- \frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{4}, - \frac {1}{2} \\ \frac {1}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{3} \Gamma \left (\frac {1}{4}\right )} - \frac {a^{\frac {3}{2}} e}{2 x^{2} \sqrt {1 + \frac {b x^{4}}{a}}} + \frac {a^{\frac {3}{2}} f \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac {3}{4}\right )} - \frac {3 \sqrt {a} b c \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{2}} \right )}}{4} + \frac {\sqrt {a} b d x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} + \frac {\sqrt {a} b e x^{2} \sqrt {1 + \frac {b x^{4}}{a}}}{4} - \frac {\sqrt {a} b e x^{2}}{2 \sqrt {1 + \frac {b x^{4}}{a}}} + \frac {\sqrt {a} b f x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {7}{4}\right )} - \frac {a \sqrt {b} c \sqrt {\frac {a}{b x^{4}} + 1}}{4 x^{2}} + \frac {a \sqrt {b} c}{2 x^{2} \sqrt {\frac {a}{b x^{4}} + 1}} + \frac {3 a \sqrt {b} e \operatorname {asinh}{\left (\frac {\sqrt {b} x^{2}}{\sqrt {a}} \right )}}{4} + \frac {b^{\frac {3}{2}} c x^{2}}{2 \sqrt {\frac {a}{b x^{4}} + 1}} \]

input
integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(3/2)/x**5,x)
 
output
a**(3/2)*d*gamma(-3/4)*hyper((-3/4, -1/2), (1/4,), b*x**4*exp_polar(I*pi)/ 
a)/(4*x**3*gamma(1/4)) - a**(3/2)*e/(2*x**2*sqrt(1 + b*x**4/a)) + a**(3/2) 
*f*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x* 
gamma(3/4)) - 3*sqrt(a)*b*c*asinh(sqrt(a)/(sqrt(b)*x**2))/4 + sqrt(a)*b*d* 
x*gamma(1/4)*hyper((-1/2, 1/4), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma 
(5/4)) + sqrt(a)*b*e*x**2*sqrt(1 + b*x**4/a)/4 - sqrt(a)*b*e*x**2/(2*sqrt( 
1 + b*x**4/a)) + sqrt(a)*b*f*x**3*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), b* 
x**4*exp_polar(I*pi)/a)/(4*gamma(7/4)) - a*sqrt(b)*c*sqrt(a/(b*x**4) + 1)/ 
(4*x**2) + a*sqrt(b)*c/(2*x**2*sqrt(a/(b*x**4) + 1)) + 3*a*sqrt(b)*e*asinh 
(sqrt(b)*x**2/sqrt(a))/4 + b**(3/2)*c*x**2/(2*sqrt(a/(b*x**4) + 1))
 
3.6.19.7 Maxima [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^5} \, dx=\int { \frac {{\left (b x^{4} + a\right )}^{\frac {3}{2}} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{5}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^5,x, algorithm="maxima")
 
output
1/8*(3*sqrt(a)*b*log((sqrt(b*x^4 + a) - sqrt(a))/(sqrt(b*x^4 + a) + sqrt(a 
))) + 4*sqrt(b*x^4 + a)*b - 2*sqrt(b*x^4 + a)*a/x^4)*c + integrate((b*f*x^ 
6 + b*e*x^5 + b*d*x^4 + a*f*x^2 + a*e*x + a*d)*sqrt(b*x^4 + a)/x^4, x)
 
3.6.19.8 Giac [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^5} \, dx=\int { \frac {{\left (b x^{4} + a\right )}^{\frac {3}{2}} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{5}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^5,x, algorithm="giac")
 
output
integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^5, x)
 
3.6.19.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^5} \, dx=\int \frac {{\left (b\,x^4+a\right )}^{3/2}\,\left (f\,x^3+e\,x^2+d\,x+c\right )}{x^5} \,d x \]

input
int(((a + b*x^4)^(3/2)*(c + d*x + e*x^2 + f*x^3))/x^5,x)
 
output
int(((a + b*x^4)^(3/2)*(c + d*x + e*x^2 + f*x^3))/x^5, x)